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The classical two-dimensional XY model with in-plane 
magnetic field 
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Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA 

Received 25 April 1989, in final form 15 September 1989 

Abstract. We present analytical and numerical simulation studies on the two-dimensional 
X Y  classical ferromagnetic model with weak in-plane magnetic field (the reduced field is 
h = 0.05 and it is applied along the x axis). The structure and dynamics of vortex spin 
configurations are considered. The simulation data show a strong crossover at T, I= 1.0 J S 2 ;  
the data for T <  T, are well interpreted by one- and two-spin wave processes with an 
additional anomalous central peak at S,,(q, w )  structure function which is suggested as a 
contribution from domain walls. The data for T a T,can be interpreted by vortex gas theory, 
The in-plane data can be compared to recent experiments performed on CoCI,-intercalated 
into graphite. The S,,(q, w )  shows unusual behaviour as T is increased to T a  1.2JS2 
indicating that another phase transition or crossover, related to the out-of-plane spin com- 
ponent, can occur. 

1. Introduction 

Classical two-dimensional (2D), easy-plane (XY) magnetism has attracted a great deal 
of attention in recent years. As for other low dimensional systems, the interplay between 
extended fluctuations and large-amplitude localised excitations has been found to be 
quite rich. Easy plane symmetry in 2~ spin systems is particularly appealing because 
it admits vortex-like spin configurations and the possibility of a topological vortex- 
antivortex unbinding transition, as proposed by Kosterlitz and Thouless (1973). 
Improvements in materials preparation have made available a considerable number 
of quasi-2~ ferro- and antiferromagnetic materials and, consequently, the amount of 
experimental information on spin dynamics has also increased considerably, making 
possible a comparison with the detailed theoretical predictions that exist for both the 
fluctuations and excitations in this model. Many of the materials that have been classified 
as quasi-2~ easy plane include anisotropies that can break the rotational symmetry of 
the X Y  plane. Jose et al(1977), using a renormalisation group technique, have studied 
the phase diagram of the 2~-planar  mode (i.e., spins restricted to the XY-plane) with in- 
plane symmetry breaking of degree p. Their conclusion is that the Kosterlitz-Thouless 
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(KT) phase is suppressed i fp  < 4. We emphasise, however, that a dynamical description 
of ZD-XY models must include the out-of-plane spin component S,. The inclusion of S ,  
can lead to additional features beyond by those predicted by JosC et a1 (1977) including 
anomalies in S, correlations (Kawabata and Bishop 1982). 

In this work, we will concentrate on ZD-XY ferromagnets with an external magnetic 
field applied along one of the in-plane axes. A magnetic field corresponds to symmetry 
breaking of degreep = 1. At low temperatures, the spins are almost completely aligned 
along the field and a standard spin wave treatment to two spin-wave processes can be 
used (section 2) to explain the main features concerning the dynamical behaviour in this 
low-temperature range. As the temperature is raised, non-linear excitations such as 
vortices and domain walls have to be incorporated in the description. In 8 3, we study, 
analytically and numerically, the effects due to the applied field on the shape and 
dynamics of vortices; formation of domain walls is also discussed there. Combined 
Monte Carlo (Mc)-molecular dynamics (MD) numerical simulation studies covering a 
wide temperature range are presented in section 4. A transition is observed at T, = 
1.0 J S 2  and we discuss separately data obtained at temperatures lower than T, (section 

4.1) and above T, (section 4.2). A comparison between our results and some recent 
inelastic neutron experiments performed on intercalated graphite compounds (CoC12- 
GIC) with an in-plane magnetic field is also included in section 4. The final conclusions 
are given in section 5. 

2. Spin-wave theory 

The ZD-XY model in a magnetic field can be described by the classical Hamiltonian 

where the summation is taken over the sites (m,  n)  of a z~-square lattice, J is the 
exchange parameter, S$,n are the components of the classical spin vector 
S m , n  = ( S k n  , SL,n , S L , n )  and 

is the sum over the nearest neighbours of each site (m,  n).  
For the pure XY model (in the absence of a field), it is well known that, besides spin 

waves, one should consider vortices as essential excitations leading to a topological 
phase transition at T, (Kosterlitz and Thouless 1973). It has been shown (Nelson and 
Fisher 1977, CBte and Griffin 1986) that, for temperatures below T,, the effect of (bound) 
vortices can be described as a renormalisation of the spin-wave excitations. In the 
presence of a magnetic field, the possibility of 2n-domain walls being formed represents 
an additional complication. However, the energy of a domain wall is proportional to its 
length (and, also, to the field strength) and it is not very probable that many domain 
walls will be created at low temperature. If the applied field is sufficiently strong, and at 
low temperatures (above the 3D ordering temperature but below T J ,  we can assume 
that the spins will be aligned nearly parallel to the field so that a spin-wave theory can 
be used. In this section, we will ignore both vortices and domain walls, and their 
interactions with spin waves, assuming that for this temperature range such effects will 
result in a renormalisation of the spin-wave energy. We will find that the principal 
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features concerning dynamical spin-correlations may be understood within the spin- 
wave approximation provided that one includes two-spin-wave processes, 

We choose x as the quantisation direction and use the Holstein-Primakoff trans- 
formation to express the spin operators as boson operators 

SX,,, = s - aA,nam,n s;,, = S; , ,  + = m a ; , , .  

After a straightforward calculation (for details, see e.g. Heilmann eta1 (1981)), spin- 
correlation functions can be obtained in the context of the harmonic approximation. For 
the spatial Fourier transform of y y -  and zz-correlation functions, we obtain 

(S;(t)S?,) = (S/2)(p,+ + ~ ; ) ~ [ n ,  exp(iw,t) + (n ,  + 1) exp(-iw,t)], (2.3a) 

(S;(t)s<,) = ( S / 2 ) ( p :  - p ; ) * [ n ,  exp(iw,t) + ( n ,  + 1)  exp(-iw,t)] (2.3b) 

where n, = [exp(fiw,/kBT) - 11-l is the usual boson occupation number, wq is the spin- 
wave energy 

U,  = JS(4 + h) ' /*(4 + h - COS - COS q i / 2 )  

p: = + [ ( J S / C O , ) ( ~ + ~ - C O S ~ ,    COS^,) f 1I1l2. 

( 2  * 4)  

h = g,uBH/JS is the reduced magnetic field, and p: , p; are given by 

(2.5) 

It is easily seen from (2.3),  that a sharp one-spin wave peak at w = k CL), is expected in 
S""(q, w), [E = y ,  21. We can also compute the integrated intensities Z"(q) = 
J d o  S""(q, U )  and obtain the ratio 

R ( q )  = W q ) / Z 2 ( q )  = (P: + P,)*/(P: - P i ) *  (>I)* (2.6) 

In obtaining (2.6), we took the classical limit of (2.3). We will show in section 4 that 
these predictions for S""(q, w) [E = y ,  z ]  agree well with our numerical simulation data. 

For the S""(q, t )  function we have 

(S",t)Srq) = aq,,((S - ( a ~ , n a , , n > > > 2 ( 6 S q ( T ) a S q )  (2.7) 

where 

is due to the spin fluctuations. The first term in (2.7) gives a Bragg peak while the second 
term, defined by (2 .8) ,  is the contribution due to two-spin wave processes: the first term 
in (2 .8)  corresponds to the simultaneous creation and annihilation of spin waves while 
the second term represents the two-spin wave annihilation (nq1nq2)  and creation 
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[(l + n4,)(1 + nq2)] processes-we shall focus only on the creation process. Taking the 
classical limit and the temporal Fourier transform of each term in (2.8), we have 

for the first term, and 

for the two-spin wave creation where q1 and q2 are restricted by the conditions 

w D  = w q + q l  - Oql OS = @q+q?; + O q 2 ’  (2.11) 

The subscripts D and S stand for difference and sum processes as suggested by (2.11). 
We can expect a very complicated spectrum because there is a singularity in 
GX&’(q, 0,) (a = D, S) for each critical point of U,+,, 2 wq, as a function of q’ .  In order 
to obtain some information about the spectrum, we consider small values for the 
wavevector q so that an expansion can be made and we obtain, approximately, 

wD = uql q sin qlX/[4 + h - 2 (cos q l X  + cos qlY)] (2.12) 

w s  = wq2{2 + q sin qh/[4  + h -  C COS q L  + cos qs)]} .  (2.13) 

(In order to obtain (2.12) and (2.13), we imposed the condition that the q vector must 
lie along thex-axis.) Even with all these approximations, it is not an easy task to perform 
the sums indicated in (2.9) and (2.10), but for q = 0 we can say that the difference and 
sum peaks will occur at wD = 0 and os = 2JS(h2 + 6h + 4)lI2; for q # 0, we expect these 
frequency peaks to change (approximately) linearly with 1 q / .  These predictions will be 
checked by the numerical simulation data (section 4). 

3. Vortices in a magnetic field 

The spin vector S can be described by two continuouslyvarying fields, O(r ,  t )  and @ ( r ,  t ) ,  
as 

S(r, t )  = S(cos O(r ,  t )  cos @ ( r ,  t ) ,  cos O(r ,  t )  sin @(r,  t ) ,  sin O(r ,  t ) )  (3.1) 

and, then, the continuum equations of motion corresponding to Hamiltonian (2.1) can 
be obtained. A general solution to these equations of motion is not available. A non- 
trivial static (@ = 0) solution can be obtained by solving the sine-Gordon equation 

V2@ = h sin @. (3.2) 
In the absence of any field, this equation gives the well-known planar vortices of the X Y  
model 

0 0  = 0 @ p , = Q , + c  (h  = 0) (3.3) 

where Q, is a polar coordinate, and c is an arbitrary constant. An analytical solution to 
(3.2), for h # 0, was given by Hudiik (1982), but it corresponds to a vortex with vorticity 
4, which is not expected to play an important role in dynamics (Amit etall980). In order 
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to study the modifications to the static vortex shape (specified by (3.3)) due to a weak 
applied field, we will adopt an approximate perturbative treatment inserting 

0 = 0 0  + 0 1  (3.4) 

and 

into the equations of motion. Here, Q0 and eo are given by (3.3) and U is the vortex 
velocity. 

This procedure is straightforward and was previously used by the authors (Gouvea 
et a1 1989a) to study the distortion suffered by a vortex due to the movement induced by 
interactions with other vortices in the system. After linearising in el, Ql and U ,  we 
obtain 

= ( u / ~ S ) ( s i n ( q  - a)/r) ( r +  (3.6a) 

where a is the angle between U and the x-axis, and 

@ l  = - (hr2 /3 )  sin(q + c)  (3.6b) 

where h is considered as a small parameter (in our numerical simulations, section 4, we 
used h = 0.05). The asymptotic solution for el, equation (3.6a) is asymmetric about u- 
the out-of-plane component has different signs on each side of the line along which the 
vortex moves. This result is identical to the one found for 2D-XY systems (Gouvea et a1 
1989a). The deformation of the in-plane field, Ql, forces the spins into the direction of 
the magnetic field, i.e., the effect of the magnetic field is to create a region (domain) 
where all spins lie along the +x direction: as the size of this region increases, the vortex 
is pushed to one of the system’s boundaries. It should be noted that and, also, the 
direction of motion depend on the constant c. In the pure XY-model, this constant has 
no role and is often ignored. However, when a certain in-plane magnetic field is applied, 
the value of c directly influences the static forceFH due to interactions with the field and, 
consequently, the direction of motion a. These conclusions can also be drawn from 
Huber’s (1982) expression for F H .  

At low temperature, we are concerned with vortex-antivortex pairs (Kosterlitz and 
Thouless 1973). In the absence of a field, the energy of a pair does not depend on the 
value of the constant c (3 .3)  of each one of the pair’s components. A field breaks the 
rotational symmetry of the XY-plane and then different pairs (corresponding to different 
cs) will have different energies; one can easily estimate which combinations correspond 
to low or high energy simply by trying to put together different vortices and antivortices 
(neglecting any distortions) and by counting the number of spins (in fact, spin 
components) aligned parallel or antiparallel to the field. The interesting conclusion is 
that the configurations that lead to minimal energy have lower energy for h # 0 than for 
h = 0. This means that these energetically favoured pairs will be more tightly bound and 
will require more energy to unbind. Consequently, we can expect that, for h # 0, vortex- 
antivortex pairs will unwind at a temperature higher than TKT ( =0.8JS2) .  

In order to check the approximate analytical results given by (3.6) and to get infor- 
mation on how the discreteness of the lattice affects the vortex motion, simulation studies 
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were performed on a 40 X 40 square lattice. The discrete equations of motion used in 
the numerical simulations are 

s, = s, x F ,  - € S I  x ( S I  x F , )  (3.7) 
(3.8) 
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The sum o n j  only runs over the nearest neighbours of i .  The parameter E is the strength 
of a Landau-Gilbert damping, which was included to damp out spin waves generated 
from non-ideal initial conditions. A single planar (0 = 0) vortex (with c = - n/2) 
centred in a unit cell of the lattice was used as the initial condition. The equations for 
the xyz-spin components were integrated using a fourth-order, Runge-Kutta scheme 
with time step 0.04 (in time units h /JS ) .  Neumann boundary conditions and a damping 
strength E = 0.1 were used. 

Figures l(a) and l(b) show the instantaneous configuration at times t = 6.0 and 15.0. 
From figure l ( a )  we see that the vortex moves along the -y direction with the out-of- 
plane spin components having different signs (white and black arrows) on each side of 
they axis. It can also be seen that the distortion of the in-plane spin component agrees, 
qualitatively, with (3.6b). Figure l(b),  at a later time, shows a large domain with all 
spins aligned along the field; the vortex is being pushed to the opposite boundary as this 
domain increases. The single vortex, which, initially ( t  = 0), extended itself through the 
whole system, is now restricted to a much smaller region. The structure seen in figure 
l(b) can be described as a vortex whose radius corresponds to a few lattice constants 
(-4a) bound to 2n-domain wall. This 2n-domain wall consists of two n-domain walls 
separated by (approximately) the vortex diameter, and its length L is the distance that 
separates the vortex from the boundary to which it is moving. The energy of a domain 
wall increases linearly with L ,  and in an infinitely extended system, the energy of the 
structure shown in figure l(b) would diverge as L + cc so that we should not expect to 
find these structures at low temperatures. However, vortex-antivortex pairs bound by 
domain walls have finite energy and can be nucleated giving rise to a linear interaction 
potential between vortices. 

Entropy arguments (Lee and Grinstein 1985, Einhorn et a1 1980, Tang and Mahanti 
1986) can be used to determine the phase diagram. Basically, we should concentrate on 
two characteristic temperatures T I  and T,. The free energy related to domain walls 
involves a competition between two terms with the same functional dependence since 
both the energy and the entropy of a domain wall depend linearly on L. T I  corresponds 
to the temperature at which these terms give the same contribution; for T 2 T I ,  the walls 
connecting vortex-antivortex pairs become flexible (i.e., transverse fluctuations become 
soft). Similar arguments (Kosterlitz and Thouless 1973) led to the identification of T,  as 
the temperature at which vortex-antivortex pairs unbind. Then, if T1 < T,, we can 
expect two transitions. For Tl < T < T,, the interaction potential between vortices 
recovers its logarithmic dependence on L (as for the ~D-XY model) and we have a KT 
phase; the second transition, at T = T,, will correspond to the KT transition. If T I  2 T2 
we will have just one transition and both phenomena, walls becoming flexible andvortex- 
antivortex unbinding, will occur for T 2 T I .  For the XY-model with symmetry breaking 
p = 1 (corresponding to an in-plane magnetic field), the work of Jose eta1 (1977) predicts 
a single crossover temperature ( T1 = T2):  in a magnetic field there is no standard phase 
transition. However, those theoretical results were obtained for the planar-model and 
could be modified when out-of-plane spin components are included-for instance, an 
additional anomaly has been noted in the specific heat (Tobochnik and Chester 1979) 
and static correlation of S, (Kawabata and Bishop 1982). 

4. Numerical simulation and analysis 

A combined Monte Carlo (Mc)-molecular dynamics (MD) method (Kawabata et a1 
1986) was used to determine the dynamic structure functions S(q, 0). The simulations 
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Figure 2. Results for S,(q = 0, U) (full 
curve) and for S,,(q = 0, w) (broken 
curve) obtained from MC-MD simulations 
of the Hamiltonian (2.1) on a 100 x 100 
lattice. The plots correspond to T =  
0.7 .IS2. 

w / J S  

were performedon a 100 X 100 square lattice for the model (2. l), with periodic boundary 
conditions. First, an MC algorithm of lo4 steps was used to produce three equilibrium 
configurations at a desired temperature. These configurations are then used as initial 
conditions for an energy-conserving MD simulation of the equations of motion. The time 
integration was performed with a standard fourth-order Runge-Kutta method, with a 
fixed time step of 0.04 (JS)-’. The dynamic structure function S,,(q, o) ((U = x, y, z )  
was then determined from the Fourier transform of the space- and time-correlation 
functions, (S,(O, O)S,(r, t ) ) .  The structure functions resulting from the three initial 
conditions for a given temperature were then averaged. A smoothing algorithm on 
S(q,  U), as in Mertens et a1 (1987), was also employed to reduce the effects of a finite 
time series and statistical fluctuations. 

Simulations were performed for a magnetic field corresponding to h = 0.05 and 
for temperatures in the range 0.7 S 2  d T d 1.3 J S 2  (in intervals AT = 0.1 JS2) .  For 
simplicity, we will discuss separately two sets of data: (i) low-temperature data 
(0.7 JS2 d T d 0.9 JS2) ,  and (ii) high-temperature data (1.0 J S 2  d T d 1.3 JS2) .  

4.1. Low-temperature data 

Here, the yy- and zz-correlation functions show a simple structure (figure 2) consisting 
of a well defined finite frequency peak at oq which softens (i.e., wq+ 0) and becomes 
broader as Tincreases. This peak can be identified as the one-spin wave peak predicted 
in ( 2 . 3 ~ )  and (2.3b). Figure 3 shows the spin wave dispersion obtained from our simu- 
lation data at T = 0.7 J S 2 ;  it compares reasonably well to theory (continuous curve) 
especially since renormalisation effects due to temperature are not included in (2.4). 
Evaluating (2.6) at q = 0 for h = 0.05, we obtain R(q  = 0) -- 78. This number cor- 
responds to a calculation made at T = 0 and shows that Iy(0) % Zz(0); the difference 
betweeny and z intensities decreases as q increases. Using the simulation data, we can 
estimate R(q = 0) at different temperatures obtaining R(q = 0) = 51, 44 and 32 for 
T = 0.7 J S 2 ,  0.8 JS2  and 0.9 JS2,  respectively. The value obtained for T = 0.7 J S 2  is 
comparable to the calculated one(T = 0). The decreasing of R(q)  as T increases is 
mainly due to the decreasing of Zy(q), since I , (q)  remains roughly constant. 
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3 -  

j 
- Figure 3. Spin-wave dispersion obtained 

from the simulated data for wavevectors 
along the x axis at T = 0.7 JSz. The crosses 
and circles correspond, respectively, to 

The full curve corresponds to equation 

1 
1 1  data taken from S,,(q, w) and SJq, 0). 

0.1 0 5  0.9 

I q l o l n  (2.4). 

The Bragg peak predicted in (2.7) is clearly seen in S,,(q = 0, U). For small q, 
S,,(q, w) exhibits a central peak and two finite frequency peaks (figure 4) that can be 
interpreted as due to the sum and difference processes discussed in section 2. Equation 
(2.11) assures that, for q # 0, the central peak (discussed below) cannot be produced by 
difference processes. Figure 5 displays the data obtained for the frequencies of spin- 
wave difference- (lower data) and sum- (upper data) peaks at T = 0.7JS2; they fit 
reasonably well to straight lines, as predicted by (2.12) and (2.13). Notice that the 
straight lines shown in figure 5 extrapolate to the expected point at q = 0, namely, 
wD(q = 0) = 0, and ws(q = 0) = 0.72 JS  (from figure 3 we obtain a gap of 0.36JS at T = 
0.7 JS’). 

It is tempting to suppose that the central peak observed in S,,(q, o) (for small q)  is 
related to the presence of domain walls (section 3). Simulation studies performed for 
~ D - X Y  models with a 4-fold in-plane symmetry breaking (implying n/2 domain walls) 
also show a central peak at low temperatures (Gouveaetal1989b) and, indeed, scattering 
from domain walls can be established as a mechanism to produce central peaks. Unfor- 
tunately, an analysis of our simulation data-focusing on the central peak behaviour 
(low T)-and its comparison to a theory including the effects mentioned above (spin 
waves, domain walls, vortices and their interactions) cannot be done because such 
theory, to our knowledge, is not available in the literature at the time of writing. 
Consequently, we cannot be conclusive in asserting that domain walls are responsible 
for the observed central peak. Our simulation data show that this central peak, or 
better, its width r, and intensity I,, suffer a change of behaviour for T 3 1.0JS’. For 
0.7 JS2  s T s 0.9 JS’, the width decreases while the intensity increases as T increases; 
i.e., the central peak becomes narrower and higher as T- 1.0 JS’. The intensity reaches 
a local maximum around T = 1.0 JS2. For T > 1.0 J S 2 ,  the width does not vary appre- 
ciably (we observe a slight increasing) with Tand the intensity I, decreases as Tincreases. 
Regarding the S ( , 0) and S,,(q, w) correlation functions, a central peak starts devel- 
oping in the vicinity of T =  1.0JS2. We interpret these changes as due to a strong 
crossover occurring about T, = 1.0 J S 2 .  

yv  f 
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Figure 4. Results for s,,(q, w) from MC-MD simu- 
lations of the Hamiltonian (2.1) on a 100 X 100 
lattice for q = (0.06 x, 0) a-’ at T = 0.7 JS’. 

$ 1  ’ 0.6 
I 1  

0 0.1 0.2 

l q I o / n  
Figure 5. Simulation data for the frequencies a,, 
of spin-wave difference (lower data) and ws of 
spin-wavesum (upper data) peaks (asexplainedin 
the text). The crosses (X )  and circles (0) indicate 
data taken from &(q, w) for q along they direc- 
tion ( X )  and x-(O) direction, respectively. 

4.2. High-temperature data 

As discussed in section 3 , we can expect that this crossover will be related to such complex 
phenomena as vortex-antivortex pair unbinding and domain walls becoming flexible 
(i.e., T, = T I  3 T2) .  We also discussed that, in the presence of an in plane magnetic 
field, the pairs should unbind at a temperature T, above TKT (which is the transition 
temperature for the pure XY-model; TKT = 0.8JS2)-as observed in the present simu- 
lations. The low-temperature data analysis suggests that the S,,(q, w) correlation func- 
tions will be more sensitive to effects due to domain walls. Therefore, effects due to the 
unbinding of vortices pairs should be seen more clearly in SJq, w) and S,,(q, w). 

Recently, Mertens et a1 (1987,1989) have proposed a phenomenological theory to 
explain the dynamic properties of spin vortices in ZD-XY ferromagnets. The theory 
assumes an ideal gas of unbound vortices above TKT and predicts a central peak for both 
in- and out-of-plane correlations. For the in-plane central peak, their theory gives 

for the q-dependent width and 

for the integrated intensity, where 6 is the root-mean-square velocity and 5 is the 
correlation length. The width of the out-of-plane central peak is given by 

TZ(4) = fiq. ( 4 . 3 ~ )  
We will assume, for the moment, that a weak magnetic field does not seriously 

ry(q) = & [ n ( ~ 5  - i)~~’~(fi/g)Vi + (5412 

z,(q) = ~ 4 4  g2/[1 + (54213/2 

(4.1) 

(4 * 2 )  
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compromise the picture of a gas of vortices moving above T,. In this context, the main 
effects due to the field would be: (i) to increase the transition temperature, i.e. T, > TKT, 
and (ii) to increase the average velocity U (section 3) with which vortices move in the 
system. Then, we can compare the predictions of that phenomenological theory with 
the MC-MD simulation results for SJq, w )  and S,,(q, w ) .  ‘The predicted q-dependencies 
((4.1), (4.2) and (4.3)) of Tz, r,. and Z) are well supported by the simulation data (figure 
6). Table 1 gives the parameters U and E obtained by fitting to the width and intensity of 
the central peaks. The data obtained for and r, overestimate the real values due to 
the difficulty of subtracting the softened spin-wave peak which appears (for small q)  
close to the central peak. Consequently, the values obtained for U,  from fitting to the 
widths, are also overestimated. Using an equation of motion for free vortices, Huber 
(1982) obtained an expression for U for the ~ D - X Y  model. His formula can be written, 
approximately (see Mertens et a1 1989) as 

(4.3b) U = (vz/2) exp(-b /v \ /z ) (b / f i  + 0.58)1/2 

where 

E(T) = go exp(bz-’/*) t = (T  - T,)/T,. (4.4) 
Here go is of the order of the lattice constant a and b has been found (Heinekamp and 
Pelcovitz 1985) to be temperature dependent. Equation (4.3) predicts a strong increase 
of Ufor temperatures slightly above T, and a saturation for z = 0.36. In order to compare 
the simulation values for U to the ones predicted by (4.3), we used go = a ,  T, = 1.0JS2 
and obtained b by fitting (4.4) to the &values obtained from ry.  Obviously, this is an 
approximate calculation for U. The values obtained from the simulations compare well 
with the calculated ones (table 1); notice that the simulation values are larger than the 
calculated values. We observe that U increases with T; probably, in order to achieve the 
region where U remains constant as T increases, we would have to consider still higher 
temperatures. It is interesting to compare our calculated values for U, in the presence of 
a field, to the ones obtained by Mertens et a1 (1989) for h = 0 (using (4.3)). The 
comparison cannot use the absolute temperature T, since T, is different for the two 
cases, but can be done in terms of the reduced temperature z. For h = 0, we repeat the 
values obtained in the referred work to (here the b-values (4.3) were taken from the 
work by Heinekamp and Pelcovitz (1985)): U = 0.30,0.47 and 0.56 for z = 0.125,0.250 
and 0.375, respectively. The last column in table 1 gives Gcorresponding to z = 0.1,0.2 
and 0.3, respectively. The immediate conclusion is that the average vortex velocity 
increases when a magnetic field is applied. 

For the ~ D - X Y  model, the (in-plane) spin waves are expected to be strongly softened 
for T > TKT (Nelson and Kosterlitz 1979); experiments and numerical simulations have 
checked this behaviour. CoC1,intercalated into graphite has been taken as an example of 
z~-easy  plane ferromagnets (Elahy and Dresselhaus 1985). Extensive inelastic neutron 
scattering experiments (Zabel and Shapiro 1987) have been performed on this compound 
and a transition is observed at Tu = 9.6 K (corresponding to Tu = 0.9 J S 2 )  which has 
been tentatively identified as a KT-transition. Also, the temperature dependence of 
the magnon dispersion was measured and spin waves for q 2 0.1 were observed to 
renormalise continuously while those at small q disappeared at Tu-in qualitative agree- 
ment with the predictions of Nelson and Kosterlitz (1979). 

The effects of an in-plane field were studied experimentally by Wiesler et aZ(1988). 
When the field is applied, they observed that, the central peak loses intensity and its 
width decreases while spin-wave peaks persist for T > Tu, even for small q.  These authors 
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Figure 6 .  Simulation data at T = 1.1 .IS2 for (a )  the width Ti of the central peak in S,,(q, w )  
(U = 0.60 * O.lO);(b)thewidthTy(E = 2.2;U = 0.71)and(c)intensityIyofthecentralpeak 
in SJq, w )  E = 1.6. Data points for the intensity result from estimating I, from plots like 
figure 7 assuming a squared Lorentzian form. Data for three different orientations of q are 
shown: (0) for q along [ l ,  01; ( X )  for q along [0, 11, and (A) for q along [ l ,  I ]  directions. Full 
curves are fits to: (a) (4.3), ( b )  (4.1), and (c) (4.2) for small q.  

concluded that the effect of the field is to effectively raise Tu without softening the spin 
waves energy. Our numerical simulations (h  = 0.05) agree qualitatively with these 
experiments since we obtain a higher transition temperature (T ,  = l.OJSz compared to 
0.8 JS2  for the pure XY-model) when an in-plane magnetic field is applied and we also 
observe in-plane spin waves for temperatures well above T,. Figure 7 shows that spin 
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Table 1. Parameters U and 5 obtained by fitting to the intensities and widths of the central 
peaks in S,Jq, U) and S,,(q, U) in OUTMC-MD data for the Hamiltonian (2.1) (h = 0.05). The 
last column gives Uvalues obtained from (4.3) and (4.4) using T, = 1.0JS2 and E o  = a. For 
E( T ) ,  we used the values given in the third column of this table. 

1.1 1.6 2.2 0.71 0.60 0.47 
1.2 1.1 2.0 0.71 0.79 0.50 
1.3 0.9 1.4 0.74 0.68 0.61 

1 
0.012 i 
0.009, 

0.006 G" 

0.031 , 'L' 1'003 Figure 7. Results from MC-MD simulations 
for the Hamiltonian (2.1) on a 100 x 100 
lattice for q = 0.08 na-' at T = 1.1 J S z  for 
SJq, U) (fullcurve)andS,,(q, w)(broken 

..- 
- _ _ _  -.__ -.._._ 

0 0.3 0.6 0.9 1.2 

w /JS curve). 

waves can be clearly seen for both yy -  and zz-correlation functions at T = 1.1 JS', even 
for low q. Our interpretation is that, in the presence of a field, the vortex pairs are more 
tightly bound and the density TI, of free vortices is lower than in the pure ~ D - X Y  
model. As a consequence, the correlation length 5: (n, = (2E)-') will be larger, and it is 
reasonable to have spin waves with wavevectors q > qc (q ,  = E - ' ) .  We observe spin 
waves with wavevector as small as q = 0.06 n ( T  = 1.1 1s'). However, then the values 
given for E in table 1 seem to be too small. The experimentally observed reduction in 
the width of the in-plane central peak can also be explained by a vortex ideal gas 
phenomenology (Mertens et a1 1989). This theory predicts that r CK i j / E  for small q. 
Then, from (4.3) and (4.4), we obtain I' cc exp( -2bz-lI2), where we have only kept the 
exponential dependence on t because it is dominant. In the presence of a field, the 
transition temperature is higher, which means that twill be lower-comparing the same 
temperature interval above T, for h = 0. A decrease in t results in a reduction of the 
width as was observed in the experiments. 

An unexpected feature in our simulations is that the out-of-plane spin wave shows a 
strong softening for T 2 1.2 J S 2  (figure 8). Also, C,(q, t = 0) = J S,,(q, w )  d o ,  which is 
related to the susceptibility, shows a maximum at T = 1.2 IS2. These features indicate 
that a dynamical crossover (or a transition; we cannot distinguish these alternatives with 
our numerical accuracy), closely related to the z-spin component, takes place at this 
temperature. Presently, we have no explanation for this behaviour, but we note that it 
occurs at the same temperature (relative to T,) where specific heat and S ,  correlations 
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Figure 8. Spin-wave frequencies (from our simulations) as functions of temperature deter- 
mined from S,,(q, w) (0) and S,,(q, w) ( X )  for two wavevectors: q = 0 (full curve) and q = 
0.04 na-le, (broken curve). 

showed an anomaly for the zero-field case (Tobochnick and Chester 1979, Kawabata 
and Bishop 1982). 

5.  Conclusions 

In this paper, we have studied the effects of an in-plane magnetic field on ~D-XY spin 
systems. In the absence of a field, vortices are well known as important excitations in 
describing the properties of ~ D - X Y  models. An external (in-plane) magnetic field, breaks 
the rotational symmetry of the XY-plane and, therefore, influences the vortex shape 
and behaviour, Besides, a field can introduce domain walls corresponding to a 2n- 
rotation about the privileged direction (here the x-axis). Our approximate analytical 
treatment and numerical simulations (section 3) show how the shape of thesingle vortex 
changes and how it moves in the presence of the field. The simulations suggest that 
vortex pairs will be connected by domain walls; the 2n-walls can be thought of as 
consisting of two n-walls separated by a narrow domain (of width - the vortex diameter) 
where the spins are antiparallel to the field. 

The MC-MD data (section 4) for temperatures lower than 1.0 J S 2  are well interpreted 
within a spin-wave approximation (section 2), provided two-spin-wave processes are 
included. However, an anomalous central peak is observed in the S,,(q, U) correlation 
function at all temperatures (0 .7JS2 < T =z 1.3JS2) we have considered in the simu- 
lations. Our hypothesis is that this central peak is intimately related to the presence of 
domain walls but additional theoretical work is necessary in order to confirm this 
possibility since many mechanisms can contribute to a central peak. The data analysis 
concerning this central peak in S,,(q, w )  reveals a change taking place at about 2- = 
1.0 JS2: for 0.7 J S 2  < T 6 1.0 IS2 ,  this central peak becomes narrower and more intense 
as T increases, while for T 2 1.0JS2 it loses intensity and becomes slightly broader. 
Simultaneously, changes are also observed in the y y -  and zz-correlation functions where 
central peaks are seen to develop for T 3 1.0 IS2.  We interpret these changes as due to 
a strong crossover from magnetic field to vortex symmetry at T, = 1.0 JS2.  
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For the pure ~D-XY model, a topological phase transition due to the unbinding of 
vortex pairs occurs at TKT = 0.8 JS2. Since the magnetic field used in our simulations is 
small ( h  = 0.05, H < J), we do not expect it to drastically alter the properties of the 
system. Therefore, we expect that the crossover at T, = 1.0 JS2  is induced by the unbind- 
ing of pairs of vortices although domain walls should also play a relevant role. It is 
reasonable to have T, > TKT because, in a magnetic field, a pair of vortices is more tightly 
bound and will unbind at a higher temperature. Our data suggest that effects related to 
the existence of domain walls are more important for S,,(q, o) functions; SJq, o) and 
S,,(q, o) would then be more sensitive to uortices. With this thought in mind, the central 
peaks in yy-  and zz-correlation functions (for T 2 1.0 J S 2 ) ,  specifically their widths and 
intensities as taken from our simulations, were analysed and compared to the predictions 
of a phenomenological theory based on a free vortex gas picture. The agreement is quite 
good and provides evidence for vortex diffusion above T,. 

Our results were compared with recent inelastic neutron scattering experimental 
data (Wiesler et a1 1988) for COC12-GIC with an in-plane magnetic field and the qualitative 
agreement is very good. Unfortunately, these experiments did not separately measure 
the out-of-plane contribution and, as yet, have not been taken to temperatures as high 
as T* = 1.2JS2 (-13 K). Thus, our results (from simulations) revealing a softening of 
out-of-plane spin waves for T >  1.2JS2 and possibly a strong second anomaly at T* 
cannot yet be compared with experiment. To understand this interesting high tem- 
perature region requires more theoretical and experimental studies. 
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